Abstract

Basing on some growth models of thin film, we have investigated the growth mechanism of glancing angle deposition (GLAD) film. The simulation verifies that the overhangs/vacancies also contribute to the columnar growth as well as the self-shadowing effect for GLAD thin film. Besides, we have studied the effect of the deposition rate, surface and bulk diffusions on the microstructure of thin film using the time-dependent Monte Carlo method. The results show that the surface and bulk diffusions can significantly enhance the packing density of thin film in GLAD growth, and the increase of the deposition rate induce the moderate decrease of the packing density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call