Abstract

The aim of the study is to identify transport patterns that may have an important influence on PM10 levels in two European cities, namely Szeged in East-Central Europe and Bucharest in Eastern Europe. 4-Day, 6-hourly three-dimensional (3D) backward trajectories arriving at these locations at 1200 GMT are computed using the HYSPLIT model over a 5-year period from 2004 to 2008. A k-means clustering algorithm using the Mahalanobis metric is applied in order to develop trajectory types. Two statistical indices are used to evaluate and compare exceedances of critical daily PM10 levels corresponding to the trajectory clusters. For Bucharest, the major PM10 transport can be clearly associated with air masses arriving from Central and Southern Europe, as well as the Western Mediterranean. Occasional North African dust intrusions over Romania are also found. For Szeged, Southern Europe with North Africa, Central Europe and Eastern Europe with regions over the West Siberian Plain are the most important sources of PM10. The occasional appearance of North-African-origin dust over Hungary is also detected. A statistical procedure is developed in order to separate medium- and long-range PM10 transport for both cities. Considering the 500m arrival height, long-range transport plays a higher role in the measured PM10 concentration both for non-rainy and rainy days for Bucharest and Szeged, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.