Abstract

ObjectivesThe aim of the present study was an in vitro evaluation of the effects of different titanium nitride (TiNx) coatings on Candida albicans (C. albicans) adhesion to titanium and to correlate these findings to differences in specific surface characteristics (surface topography, roughness, chemical component, and surface free energy). MethodsTiNx coatings were prepared by physical vapour deposition (PVD), a plasma nitriding process or a dual nitriding process. Surface properties were analysed by the optical stereoscopic microscopy, scanning electron microscopy, roughmeter, and drop shape methods. Quantity comparisons of C. albicans on the four surfaces were assessed by cell count and XTT reduction assays. Types of adhesive C. albicans were explored by SEM and confocal laser scanning microscope. ResultsThe nitrided modifications were found to influence the surface properties and fungal susceptivity of flat titanium. Compared to flat titanium, fewer adhered C. albicans in yeast form were observed on the TiN-coated surface, whereas the plasma nitrided surface did not show any reduced potential to adhere C. albicans in hyphal or yeast form. The dual nitrided coating showed anti-fungal characteristics, although a small quantity of hyphae were identified. Our findings indicate that the Ti2N phase is prone to C. albicans hyphae, while the TiN phase inhibits their adhesion. ConclusionsDifferent TiNx phases could influence the characteristics of C. albicans adhesion. TiN coating by PVD could be a potential modification to inhibit C. albicans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.