Abstract

The aim of this study was to analyze the long-term color stability of eight self-adhesive composite resin cements (SACRCs) after storage in diverse media for up to one year. 480 discs (diameter: 12 mm/thickness: 1.0 ± 0.05 mm) were fabricated (n = 60/SACRC): (1) BeautyCem (BEA); (2) Bifix SE (BIF); (3) Clearfil SA Cement Automix (CLE); (4) RelyX Unicem 2 Automix (RXU); (5) SeT (SET); (6) SmartCem 2 (SMC); (7) SoloCem (SOC); and (8) SpeedCEM (SPC). After polishing, specimens were immersed in (a) red wine (RW); (b) curry-solution (CU); (c) cress-solution (CR); and (d) distilled water (DW) at 37 °C and measured after 7, 28, 90, 180, and 365 days for color differences (ΔE) and water absorption (WA). Non-aged specimens were used as baselines. After 365 days, all of the discs were polished and their ΔE was measured. Data were analyzed using Kolmogorov-Smirnov, partial-eta-squared/ηP2, 3-/1-way ANOVA with Tukey-HSD post-hoc test (α = 0.05). Significant differences occurred between all SACRCs for WA (p ≤ 0.003), except in RXU and in SET and in ΔE (p ≤ 0.002), except in SET and SPC. The significantly highest WA presented in SOC; the lowest showed in BEA. Significant ΔE differences and a decrease after polishing between all storage media were found (p < 0.001) with highest values for RW, followed by CU, CR, and DW. The lowest ΔE was measured for CLE, followed by SOC, BIF, RXU, BEA, SPC, SET, and SMC (p < 0.001) and increased significantly during aging. The highest ΔE decrease presented in BEA. SACRCs showed an increase in WA/ΔE within total aging time. Discoloration could not be removed completely by polishing. SACRCs need to be carefully selected for restorations in the esthetical zone with visible restoration margins. Polishing can significantly reduce the marginal discoloration.

Highlights

  • Patients’ esthetic demands for the highest quality tooth-colored restorative solutions that have the best natural appearance are steadily increasing

  • Afterwards, the storage in a lightproof box of each group was performed at 37 ◦ C in an incubator (HERA cell 150, Thermo scientific, Heraeus Kulzer, Hanau, Germany) and the specimens of each group were randomly divided into 4 sub-groups per 4 storage media (n = 15 per medium and self-adhesive composite resin cements (SACRCs)): (a)

  • SARCs showed a significant increase in sorption and discoloration rates within total aging time

Read more

Summary

Introduction

Patients’ esthetic demands for the highest quality tooth-colored restorative solutions that have the best natural appearance are steadily increasing. It is already known that the continuous exposure of the restoration margins to the oral environment reduces the mechanical properties by hydrolytic degradation [1,2] This leads to sorption that may result in swelling of the material, weakening of the polymer network, degradation of the filler matrix composite and, to secondary caries and hypersensitivity of the teeth at restoration. Compared to conventional composite resins, SACRCs exhibit almost identical compositions in respect of the functional monomers, such as bisphenol-A-diglycidylmethacrylate (Bis-GMA), urethandimethacrylate (UDMA), and hydroxyethylmethacrylate (HEMA), as well as the filler content. They contain additional acidic groups (for example, phosphoric acid esters or carboxylate groups). These lead to an improved adhesion to the hard tooth tissues by demineralization of the tooth stump, in contrast to the purely micromechanical adhesion [10,12,13,14,15], which is important for a tight marginal seal

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call