Abstract

AbstractSuperposed epoch analyses were performed on 193 significant relativistic electron flux dropout events, in order to study the roles of different solar wind parameters in driving the depletion of relativistic electrons, using ~16 years of data from the POES and GOES missions, and the OMNIWEB solar wind database. We find that the solar wind dynamic pressure and interplanetary magnetic field (IMF) Bz play key roles in causing the relativistic electron flux dropouts, but also that either large solar wind dynamic pressure or strong southward IMF Bz by itself is capable of producing the significant depletion of relativistic electrons. The relativistic electron flux dropouts occur not only when the magnetopause is compressed closer to the Earth but also when the magnetopause is located very far (> ~10 RE). Importantly, our results show that in addition to the large solar wind dynamic pressure, which pushes the magnetopause inward strongly and causes the electrons to escape from the magnetosphere, relativistic electrons can also be scattered into the loss cone and precipitate into the Earth's atmosphere during periods of strong southward IMF Bz, which preferentially provides a source of free energy for electromagnetic ion cyclotron (EMIC) wave excitation. This is supported by the fact that the strongest electron precipitation into the atmosphere is found in the dusk sector, where EMIC waves are typically observed in the high‐density plasmasphere or plume and cause efficient electron precipitation down to ~1 MeV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.