Abstract

BackgroundScrew-rod constructs have been widely used to correct spinal deformities, but the effects of different screw-rod systems on anti-rotational torque have not been determined. This study aimed to analyze the biomechanical effect of different rod-screw constructs on anti-rotational torque.MethodsThree conventional spinal screw-rod systems (Legacy, RF-F-10 and USSII) were used to test the anti-rotational torque in the material test machine. ANOVA was performed to evaluate the anti-rotational capacity of different pedicle screws-rod constructs.ResultsThe anti-rotational torque of Legacy group, RF-F-10 group and USSII group were 12.3 ± 1.9 Nm, 6.8 ± 0.4 Nm, and 3.9 ± 0.8 Nm, with a P value lower than 0.05. This results indicated that the Legacy screws-rod construct could provide a highest anti-rotation capacity, which is 68% and 210% greater than RF-F-10 screw-rod construct and USSII screw-rod respectively.ConclusionsThe anti-rotational torque may be mainly affected by screw cap and groove design. Our result showed the anti-rotational torque are: Legacy system > RF-F-10 system > USSII system, suggesting that appropriate rod-screw constructs selection in surgery may be vital for anti-rotational torque improvement and preventing derotation correction loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.