Abstract

Severe hypobaric hypoxia (180 mm Hg) is a harmful stimulus that induces structural and functional injures of susceptible brain neurons in the neocortex and hippocampus. In contrast, moderate hypobaric hypoxia (360 mm Hg) activates endogenous cellular defensive mechanisms. The rate of neuroprotection afforded by the mild hypoxia depends on the quantity of hypoxic sessions. In particular, preconditioning (pre-exposure) by three trials of mild hypoxia protects from deleterious effects of subsequent severe hypoxia whereas preconditioning with one mild hypoxic trial does not. The molecular mechanisms induced by mild hypoxic preconditioning are unclear. Pro-survival proteins, such as neurotrophic factor BDNF and anti-apoptotic factor Bcl-2 are supposed to be involved in this process. In the present study, the effects of three-trial and one-trial hypoxic preconditioning on the expression of pro-survival proteins BDNF and Bcl-2 as well as their up-stream activator pCREB, have been studied in the neocortex and hippocampus of rats. As revealed by quantitative immunocytochemistry, the severe hypobaric hypoxia didn’t affect or down-regulated the neuronal levels of pCREB, BDNF and Bcl-2 at 3-24 h after the exposure. The one-trial preconditioning did not change this effect of severe hypoxia. In contrast, preconditioning by three trials of mild hypoxia (360 Torr, 2h, 24 h intervals, 3 times) significantly enhanced the pCREB, BDNF and Bcl-2 neuronal expression in response to severe hypoxic challenge. Three-trial mild hypoxia alone also up-regulated the expression of molecular factors examined in the neocortex and hippocampus at 24 h whereas one trial of the mild hypoxia did not. The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as BDNF and Bcl-2 overexpression.

Highlights

  • Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia

  • The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as brain-derived neurotrophic factor (BDNF) and Bcl-2 overexpression

  • No significant differences in serum level of Solubile form of RAGE (sRAGE) where found between rapidly progressing and slow progressing subgroup of multiple sclerosis (MS) patients.Our results suggest for the role of sRAGE in MS ethiopathogenesis, but we did not find any association of sRAGE in serum with the rate of MS disability progression

Read more

Summary

Introduction

Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia. The aim of the study was to characterize the effects of streptozocin (STZ)-indced diabetes on learning and memory of 5XFAD and wild-type (WT) mice in Morris water maze (MWM) at ages 2 and 6 months and on brain amyloid load. Existing evidence suggests GABAergic system is involved in pathophysiology of Alzheimer’s disease (AD) via inhibitory interneuron deficits (Verret et al, 2012) and decrease in functional GABAA receptors (Limon et al, 2012). Our concept: low doses of muscimol may prevent learning/memory deficits in intracerebroventricular (icv) streptozocin (STZ)-induced AD nontransgenic rat model. The Sigma-1 receptor is a chaperone protein that modulates intracellular calcium signalling of the endoplasmatic reticulum and is involved in learning and memory processes.The aim of the present study was to compare in vitro Ca2+ concentration modulating activity and in vivo behavioural effects of enantiomers of methylphenylpiracetam, a novel positive allosteric modulator of Sigma-1 receptors

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call