Abstract

Utilizing latent heat thermal energy storage (LHTES) units shows promise as a potential solution for bridging the gap between energy supply and demand. While an LHTES unit benefits from the latent heat of the high-capacity phase change material (PCM) and experiences only minor temperature variations, the low thermal conductivity of PCMs hinders the rapid adoption of LHTES units by the market. In this regard, the current work aims to investigate the thermal behavior of a semi-cylindrical LHTES unit with various copper fin configurations (including horizontal, inclined, and vertical fins) on the melting flow. The novelty of this research lies in the fact that no prior studies have delved into the impact of various fin structures on the thermal performance of a semi-cylindrical LHTES system. The nano-enhanced phase change material (NePCM) fills the void within the unit. The warm water enters the semicircular channel and transfers a portion of its thermal energy to the solid NePCM through the copper separators. It is found that the system experiences the highest charging capability when the fins are mounted horizontally and close to the adiabatic upper wall. Moreover, the presence of dispersed graphite nanoplatelets (GNPs) inside the pure PCM increases the charging power and temperature of the LHTES unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.