Abstract

By observing the dynamic changes of extracellular histones H1, H2A, H4, and NF-κB expression in brain tissues after brain injury in rats, we explore the association among the expression of extracellular histones H1, H2A, H4, and NF-κB following traumatic brain injury (TBI), as well as the effect of different atmospheres absolute hyperbaric oxygen (HBO) intervention on the expression and possible mechanisms. A total of 120 SD rats were randomly divided into 4 groups: Sham-operated (SH), TBI (traumatic brain injury) group, traumatic brain injury and hyperbaric oxygen treatment 1.6ATA (TBI + HBO1) group, and traumatic brain injury and hyperbaric oxygen treatment2.2ATA (TBI + HBO2) group, with 30 rats in each group. The rats in each group were then randomly divided into five smaller time-specific sub-groups: 3 h, 6 h, 12 h, 24 h, and 48 h after surgery. TBI models were established, and the brain tissue around the lesion was taken at different time points. On the one hand,we detected the level of local histones H1, H2A, H4, and NF-κB by RT-PCR and Western Blot. On the other hand, we used immunohistochemical methods to detect the expression of NF-κB, while using the TUNEL method to observe the cell apoptosis in experimental groups after brain injury. Extracellular histones H1, H2A, H4, and NF-κB proteins were highly expressed at 3 h, then with a slight fluctuation, reached to peak at 48 h after the injury. HBO can affect the expression of histones H1, H2A, H4, and NF-κB. The decline of each indicator in the 1.6ATA group was significantly lower than that in the 2.2ATA group, especially within 6 h (P < 0. 05). In addition, NF-κB expression was consistent with the pathological changes of apoptosis in experimental groups. Hyperbaric oxygen therapy with relatively low pressure (1.6ATA) at the early stage can significantly inhibit the expression of extracellular histones H1, H2A, H4, and NF-κB around the lesion, reduce the apoptosis of nerve cells, and thus play an important role in alleviating secondary brain injury.

Highlights

  • In recent years, the incidence of traumatic brain injury (TBI) caused by motor vehicle accidents, falls, violence, and blunt trauma has increased.(Ng & Lee, 2019) WHO stated that TBI will be the most frequent disorder in 2020.Fang Liang and Lei Sun contributed to this work.Damage to brain function due to trauma may be permanent, leading to emotional, cognitive, and motor disturbances

  • The mNSS scores were significantly reduced in the TBI + HBO1 groups at 48 h compared with those in the TBI groups (P < 0.05), while there was no significant difference between the TBI and the TBI + HBO1 groups (Fig. 1)

  • It suggested that 1.6ATA Hyperbaric oxygen therapy (HBOT) significantly improved neural functional recovery in the early stage of TBI

Read more

Summary

Introduction

The incidence of traumatic brain injury (TBI) caused by motor vehicle accidents, falls, violence, and blunt trauma has increased.(Ng & Lee, 2019) WHO stated that TBI will be the most frequent disorder in 2020.Fang Liang and Lei Sun contributed to this work.Damage to brain function due to trauma may be permanent, leading to emotional, cognitive, and motor disturbances. A series of cellular and molecular changes play an important role in these cascades, resulting in excitotoxicity neuroinflammation and apoptotic cell death of neurons and glia.(Jassam et al, 2017)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.