Abstract

The evolution of restorative materials in prosthodontics has led to the emergence of indirect composite resins, including ceromers, as alternatives to traditional metal-ceramic restorations. However, research gaps exist regarding the impact of ageing protocols on the bond strength of ceromer composites to different metal substructures, necessitating further investigation in this area. This study aimed to determine the effect of five different ageing protocols on the shear bond strength (SBS) of ceromer indirect composites on two different substructures. In this in vitro study, 120 metallic discs (10 × 2 mm) were cast from cobalt-chromium (Co-Cr) alloy (n = 60) and spark erosion treated from grade V titanium (n = 60). Each sample was sandblasted. The M.L. primer (Shofu, Germany) and layers of opaque were applied to the surface following the manufacturer's instructions. A special jig (6 × 2 mm) was placed on each disc. The ceromer was condensed in it and light-cured separately for 90 s. Following polishing, specimens were separated into five ageing groups: distilled water (as a control), thermal cycling, tea, coffee, and gastric acid immersion. All samples were placed in 37°C incubation for 28 days for distilled water, coffee, and tea, and 7 days for gastric acid immersion and thermal cycling for 5000 cycles (5-55°C). A universal test machine was used to measure the SBS. The samples were evaluated for failure modes using stereomicroscopy. Data were analyzed using one-way analysis of variance (ANOVA) (P < 0.05). According to one-way ANOVA, the mean SBS (MPa) between the two groups was compared in each ageing protocol, and there were no significant differences between the Co-Cr-C and Ti-C groups (P > 0.05). The most frequent mode of failure in all groups was mixed. Applying the ageing protocols, the type of substructure material had no significant effect on the SBS of the ceromer indirect composite except for tea immersion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.