Abstract

This study was conducted to assess the effects of dietary Clostridium butyricum on the growth, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). Three hundreds of tilapia (56.21 ± 0.81 g) were divided into 5 groups and fed a diet supplemented with C. butyricum at 0, 1 x 104, 1 x 105, 1 x 106 or 1 x 107 CFU g-1 diet (denoted as CG, CB1, CB2, CB3 and CB4, respectively) for 56 days. Then 45 fish from each group were intraperitoneally injected with Streptococcus agalactiae, and the mortality was recorded for 14 days. The results showed that dietary C. butyricum significantly improved the specific growth rate (SGR) and feed intake in the CB2 group and decreased the cumulative mortality post-challenge with S. agalactiae in the CB2, CB3 and CB4 groups. The serum total antioxidant capacity and intestinal interleukin receptor-associated kinase-4 gene expression were significantly increased, and serum malondialdehyde content and diamine oxidase activity were significantly decreased in the CB1, CB2, CB3 and CB4 groups. Serum complement 3 and complement 4 concentrations and intestinal gene expression of tumour necrosis factor α, interleukin 8, and myeloid differentiation factor 88 were significantly higher in the CB2, CB3 and CB4 groups. Intestinal toll-like receptor 2 gene expression was significantly upregulated in the CB3 and CB4 groups. Dietary C. butyricum increased the diversity of the intestinal microbiota and the relative abundance of beneficial bacteria (such as Bacillus), and decreased the relative abundance of opportunistic pathogenic bacteria (such as Aeromonas) in the CB2 group. These results revealed that dietary C. butyricum at a suitable dose enhanced growth performance, elevated humoral and intestinal immunity, regulated the intestinal microbial components, and improved disease resistance in tilapia. The optimal dose was 1 x 105 CFU g-1 diet.

Highlights

  • In recent years, fish has increased in importance as a food source for humans, and aquaculture has rapidly developed [1]

  • Studies showed that survival post-challenge with pathogenic bacteria was significantly increased in Chinese drum (Miichthys miiuy) [18] and Pacific white shrimp (Litopenaeus vannamai) [19,20] fed a diet supplemented with C. butyricum for 30 and 42 days, respectively

  • The present study found that dietary C. butyricum at a level of 1 x 105 CFU g-1 diet significantly improved the growth performance of tilapia

Read more

Summary

Introduction

Fish has increased in importance as a food source for humans, and aquaculture has rapidly developed [1]. The extensive usage of antibiotics may cause some negative effects, such as the emergence of antibiotic-resistant bacteria and antibiotic residues, which may affect the sustainable development of aquaculture and human health [3]. Studies have shown that probiotics can improve growth [5,6,7,8,9,10], enhance the immune reponse [11,12,13], and improve disease resistance in fish [5,6,8,9,10,13,14]. There are few studies about the effect of dietary C. butyricum on tilapia

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call