Abstract

A study was designed to determine the potential prebiotic effect of dietary mushrooms on the host immune response, and intestinal microbiota composition and function. Thirty-one six-week-old pigs were fed a pig grower diet alone or supplemented with either three or six servings of freeze-dried white button (WB)-mushrooms for six weeks. Host immune response was evaluated in peripheral blood mononuclear cells (PBMC), and alveolar macrophages (AM) after stimulation with Salmonella typhymurium-Lipopolysaccharide (LPS). Isolated DNA from fecal and proximal colon contents were used for 16S rDNA taxonomic analysis and linear discriminant analysis effect size (LEfSe) to determine bacterial abundance and metabolic function. Pigs gained weight with no difference in body composition or intestinal permeability. Feeding mushrooms reduced LPS-induced IL-1β gene expression in AM (P < 0.05) with no change in LPS-stimulated PBMC or the intestinal mucosa transcriptome. LEfSe indicated increases in Lachnospiraceae, Ruminococcaceae within the order Clostridiales with a shift in bacterial carbohydrate metabolism and biosynthesis of secondary metabolites in the mushroom-fed pigs. These results suggested that feeding WB mushrooms significantly reduced the LPS-induced inflammatory response in AM and positively modulated the host microbiota metabolism by increasing the abundance of Clostridiales taxa that are associated with improved intestinal health.

Highlights

  • Mushrooms contain many bioactive components including polysaccharides, glycoproteins, proteins, lipids, and secondary metabolites [1]

  • This study showed that pigs fed a six week dietary supplementation of white button (WB) mushrooms equivalent to 75 and 150 g consumed by humans positively affected the composition of the fecal and proximal colon microbiota by promoting the abundance of Ruminococcaceae (Oscillibacter, Butyricicoccus) and Lachnospiraceae (Fusicatenibacter, Robinsoniella, Eisenbergiella) families; which are known for degradation of complex plant material in the mammalian gut [58], and are considered as beneficial given their production of butyrate

  • Butyrate serves as the main source of energy for colonocytes helping with the maintenance of gut homeostasis and intestinal epithelial integrity and interferes with inflammatory signals such as NF-κB [59,60]

Read more

Summary

Introduction

Mushrooms contain many bioactive components including polysaccharides, glycoproteins, proteins, lipids, and secondary metabolites [1]. Polysaccharides composed of glucose, mannose, galactose, fucose, arabinose, glucuronic acid, and β-D-glucan are the most potent substances of mushrooms that show demonstrable beneficial properties such as antioxidant [2], immune-stimulatory [3,4] lipid lowering [5,6], and anti-tumor activity [7,8,9]. Processing of the mushroom may determine the effect produced on immune cells, possibly due to different solubility and potency of specific compounds [10,11]. Edible mushrooms have been studied extensively for their immune modulating properties in animal models including β-glucan-induced anti-inflammatory effects [3,12], enhanced. NK cell activity [11,13], improved dendritic cell (DC) maturation and function [14], increased cytokine production [15], increased protective immunity from Salmonella vaccination [16], and anti-inflammatory effects in patients with ulcerative colitis and Crohn’s disease [17,18,19,20].

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call