Abstract

The reconstructed electron density image quality is sensitive to the detector size and energy resolution, which contribute to the blurring and noise in the image. This work evaluates optimal values of the detector parameters for a realistic system through analytical simulations of the transverse slice of the dedicated breast CT system geometry. This study introduces a spectroscopic x-ray tomography technique which uses multiple projections to reconstruct electron density images by backprojecting scattered photons over isogonic curves. The reconstruction can be obtained using a single projection yet its quality degrades as the acquisition conditions i.e. detector size and energy resolution deviate from the ideal. The reconstruction quality becomes inconsistent throughout the image due to the data under sampling caused by the finite resolution of the detector. The extension to the multi-projection mode effectively fills-in the missing data space and improves the ability to reconstruct an object. This work demonstrates the possibility to obtain images in the presence of noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call