Abstract

To support the successful application of sponges for water purification and collagen production, we evaluated the effect of depth on sponge morphology, growth, physiology, and functioning. Specimens of Eastern Mediterranean populations of the sponge Chondrosia reniformis (Nardo, 1847) (Demospongiae, Chondrosiida, Chondrosiidae) were reciprocally transplanted between 5 and 20 m depth within the Kaş-Kekova Marine Reserve Area. Control sponges at 5 m had fewer but larger oscula than their conspecifics at 20 m, and a significant inverse relationship between the osculum density and size was found in C. reniformis specimens growing along a natural depth gradient. Sponges transplanted from 20 to 5 m altered their morphology to match the 5 m control sponges, producing fewer but larger oscula, whereas explants transplanted from 5 to 20 m did not show a reciprocal morphological plasticity. Despite the changes in morphology, the clearance, respiration, and growth rates were comparable among all the experimental groups. This indicates that depth-induced morphological changes do not affect the overall performance of the sponges. Hence, the potential for the growth and bioremediation of C. reniformis in mariculture is not likely to change with varying culture depth. The collagen content, however, was higher in shallow water C. reniformis compared to deeper-growing sponges, which requires further study to optimize collagen production.

Highlights

  • Sponges are found at all latitudes, living in a wide array of ecosystems varying in temperature and depth [1,2]

  • The aim of this study was to investigate the effect of depth on the bacterial clearance, morphology, respiration, growth, and collagen production of C. reniformis

  • Our data show that the osculum morphology is depth-dependent, whereas the bacterial clearance rate, respiration, and growth are not

Read more

Summary

Introduction

Sponges are found at all latitudes, living in a wide array of ecosystems varying in temperature and depth [1,2]. They are filter-feeding organisms often dominating the benthos in terms of abundance and biomass [3,4,5,6]. Sponges have a high efficiency and capacity for particle retention [3,4,14], preferably small particles (

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call