Abstract

TiO2 thin films were deposited on Si substrates by using conventional radio-frequency (RF) magnetron sputtering with either metallic Ti or TiO2 targets, and the effect of the deposition parameters (substrate temperature (T s ), RF sputtering power, gas flow ratio of O2/(Ar+O2) and deposition time) on the phase of the film was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to obtain information on the phase of the films and on the surface image/thickness of films, respectively. TiO2 films deposited at a T s higher than 300 °C by using a metallic Ti target showed the dominant presence of the rutile phase. For films grown at a constant T s of 300 °C with different gas flow ratios of O2/(Ar+O2), the amount of the rutile phase gradually decreased as the oxygen gas flow was decreased. The anatase phase, however, was formed when the O2/(Ar+O2) was 0.2. On the other hand, for TiO2 films deposited at T s ’s between 50 °C and 200 °C with an O2/(Ar+O2) of 0.1 by using a TiO2 target, both the anatase and the rutile phases gradually decreased as the T s was increased. For TiO2 films deposited with various gas flow ratios of O2/(Ar+O2) between 0 and 0.4 at a constant T s of 200 °C by using a TiO2 target, the anatase phase gradually decreased, but the rutile phase gradually increased, as the gas flow ratio was increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call