Abstract

ObjectiveTo evaluate the effect of load-cycle aging and/or 6 months artificial saliva (AS) storage on bond durability and interfacial ultramorphology of resin-modified glass ionomer cement (RMGIC) applied onto dentine air-abraded using Bioglass 45S5 (BAG) with/without polyacrylic acid (PAA) conditioning. MethodsRMGIC (Ionolux, VOCO) was applied onto human dentine specimens prepared with silicon-carbide abrasive paper or air-abraded with BAG with or without the use of PAA conditioning. Half of bonded-teeth were submitted to load cycling (150,000 cycles) and half immersed in deionised water for 24 h. They were cut into matchsticks and submitted immediately to microtensile bond strength (μTBS) testing or 6 months in AS immersion and subsequently μTBS tested. Results were analysed statistically by two-way ANOVA and Student–Newman–Keuls test (α = 0.05). Fractographic analysis was performed using FE-SEM, while further RMGIC-bonded specimens were surveyed for interfacial ultramorphology characterisation (dye-assisted nanoleakage) using confocal microscopy. ResultsRMGIC applied onto dentine air-abraded with BAG regardless PAA showed no significant μTBS reduction after 6 months of AS storage and/or load cycling (p > 0.05). RMGIC–dentine interface showed no sign of degradation/nanoleakage after both aging regimens. Conversely, interfaces created in PAA-conditioned SiC-abraded specimens showed significant reduction in μTBS (p < 0.05) after 6 months of storage and/or load cycling with evident porosities within bonding interface. ConclusionsDentine pre-treatment using BAG air-abrasion might be a suitable strategy to enhance the bonding performance and durability of RMGIC applied to dentine. The use of PAA conditioner in smear layer-covered dentine may increase the risk of degradation at the bonding interface. Clinical significanceA combined dentine pre-treatment using bioglass followed by PAA may increase the bond strength and maintain it stable over time. Conversely, the use of PAA conditioning alone may offer no significant contribute to the immediate and prolonged bonding performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call