Abstract
The triangular oscillating jet nozzle generates a triangular jet partially confined within an axi-symmetric chamber to produce a large scale flow oscillation that has application in thermal processes. Particle image velocimetry and oscillation frequency measurements were conducted to investigate the influence of the jet fluid to ambient fluid density ratio on the resulting oscillating flow. The investigation was conducted with a jet momentum flux of 0.06 kg m s−2 (Re = 7.3−47.2 × 103) and density ratios ranging from 0.2 to 5.0. The initial spread and decay of the emerging jet was found to depend upon the density ratio but in a more complex way than does an unconfined jet. Both the spread and decay are strongly influenced by the instantaneous angle of jet deflection, with greater deflection leading to increased spreading and decay of the jet. Decreasing the density ratio below unity results in a rapid decrease in the deflection angle, while increasing the density ratio above unity results in an increase in the deflection angle, albeit with less sensitivity. The frequency of oscillation was also shown to depend on the density ratio with an increase in the density ratio causing a decrease in the dominant oscillation frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.