Abstract
The paper presents the effect of deep cryogenic treatment (DCT) and a synergic combination of low-temperature treatment and precipitation hardening on the structure, micromechanical and tribological properties of the Mg–Y-Nd-Zr alloy (WE54). Where ageing was preceded by deep cryogenic treatment, a strengthening role of low-temperature treatment was found, as well as acceleration of the precipitation process. Tribological tests have shown that both the cryogenic treatment itself and a sequential treatment of the WE54 alloy result in a significant reduction of both tribological wear and the friction coefficient. Examination of wear track morphologies showed the occurrence of abrasive wear mechanisms, such as microploughing and microcutting, as well as the occurrence of materials transfer, which is a typical appearance of the adhesion mechanism. The most advantageous properties were found in the alloy subjected to precipitation hardening using deep cryogenic treatment after solutioning and ageing. The proposed treatment effectively reduced the formation of deep scratches and contributed to an increase in resistance to abrasive wear. The obtained results indicate the possibility of significant improvement in the service life of magnesium alloys with rare earth metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.