Abstract

Since decellularized tissues may offer the instructive niche for cell differentiation and function, their use as cell culture scaffolds is a promising approach for regenerative medicine. To repair osteochondral tissues, developing a scaffold with biomimetic structural, compositional, and functional characteristics is vital. As a result of their heterogeneous structure, decellularized articular cartilage matrix from allogeneic and xenogeneic sources are considered appropriate scaffolds for cartilage regeneration. We developed a scaffold for osteochondral tissue engineering by decellularizing sheep knee cartilage using a chemical technique. DNA content measurements and histological examinations revealed that this protocol completely removed cells from decellularized cartilage. Furthermore, SEM, MTS assay, and H&E staining revealed that human endometrial stem cells could readily adhere to the decellularized cartilage, and the scaffold was biocompatible for their proliferation. Besides, we discovered that decellularized scaffolds could promote EnSC osteogenic differentiation by increasing bone-specific gene expression. Further, it was found that decellularized scaffolds were inductive for chondrogenic differentiation of stem cells, evidenced by an up-regulation in the expression of the cartilage-specific gene. Also, in vivo study showed the high affinity of acellularized scaffolds for cell adhesion and proliferation led to an improved regeneration of articular lesions in rats after 4weeks. Finally, a perfect scaffold with high fidelity is provided by the developed decellularized cartilage scaffold for the functional reconstruction of osteochondral tissues; these types of scaffolds are helpful in studying how the tissue microenvironment supports osteocytes and chondrocytes differentiation, growth, and function to have a good osteochondral repair effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.