Abstract

Integrating IoT devices in SCADA systems has provided efficient and improved data collection and transmission technologies. This enhancement comes with significant security challenges, exposing traditionally isolated systems to the public internet. Effective and highly reliable security devices, such as intrusion detection system (IDSs) and intrusion prevention systems (IPS), are critical. Countless studies used deep learning algorithms to design an efficient IDS; however, the fundamental issue of imbalanced datasets was not fully addressed. In our research, we examined the impact of data imbalance on developing an effective SCADA-based IDS. To investigate the impact of various data balancing techniques, we chose two unbalanced datasets, the Morris power dataset, and CICIDS2017 dataset, including random sampling, one-sided selection (OSS), near-miss, SMOTE, and ADASYN. For binary classification, convolutional neural networks were coupled with long short-term memory (CNN-LSTM). The system's effectiveness was determined by the confusion matrix, which includes evaluation metrics, such as accuracy, precision, detection rate, and F1-score. Four experiments on the two datasets demonstrate the impact of the data imbalance. This research aims to help security researchers in understanding imbalanced datasets and their impact on DL SCADA-IDS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.