Abstract

Natural fibers of plant origin are finding non-traditional applications as reinforcement of composite materials. The mechanical properties of fibers exhibit considerable scatter, being affected by the natural variability in plant as well as the damage accumulated during processing. For bast fibers, the primary damage mode is kink bands – zones of misaligned cellulose microfibrils extending across the fiber and oriented roughly perpendicularly to its axis. Another feature typical for natural fibers and contributing to the scatter of fiber strength is the variability of diameter along a fiber length and among the fibers. An analytical expression for the distribution of the longitudinal tensile strength of bast fibers has been derived, accounting for the strength variability of intact fibers and the effect of kink bands. Upon determining the relevant parameters from fiber damage and geometry characteristics by means of optical microscopy, the theoretical strength distribution function has been found to agree reasonably well with the test results of elementary flax fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.