Abstract

ABSTRACT The relationship between microfilaments (Mfs) and microtubules (Mts) in the organization of the preprophase band (PPB) was investigated in Allium root tip cells subjected to treatment with cytochalasin D (CD). Mts and Mfs were visualized by indirect immunofluorescence and various parameters such as PPB width were analyzed quantitatively. In control samples, the PPB first appears as a wide Mt band that progressively narrows to an average width of 4 m in mid-prophase. Randomly oriented Mfs are present throughout the cytoplasm of most interphase control cells. Preprophase and prophase cells, however, contain cortical Mfs arranged parallel to the PPB. The Mfs initially occupy much of the cortex but in most cells they progressively become restricted to an area wider than the PPB. In the presence of CD, the PPB fails to narrow and remains at least two-fold wider than in control cells. PPB width expressed as a percentage of nuclear or cell length also increases compared to controls. Widening is concentration dependent, and the effect of 10 M CD is near maximal only 15 min after application of the drug. This rapid response suggests that a rebroadening of already condensed PPBs takes place. After as little as 15 min in CD, Mfs are replaced by many small specks and rods. Dual localizations of both Mts and Mfs show that prophase cells contain broad PPBs without Mfs. The rapid disorganization of Mfs, by CD, therefore coincides with the rebroadening of PPBs. CD-treated cells in metaphase, anaphase and telophase contain larger actin aggregates at the poles, as previously reported. The results indicate that Mfs play an important role in the narrowing of the PPB, which in turn is essential for determination of the exact position of the plane of division. They also indicate that movement of intact Mts is important in PPB organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.