Abstract

Proteoglycan synthesis by cultured chondrocytes from the Swarm rat chondrosarcoma was examined after treatment with 0.1 mg/ml of cycloheximide which inhibited [3H]serine incorporation into total protein by greater than 90%. Incorporation of [35S]sulfate into proteoglycans decreased with nearly first order kinetics (t 1/2 = 96 +/- 6 min) with an accompanying increase in the size of the proteoglycan molecules, primary due to an increase in chondroitin sulfate chain sizes. After 5 h of cycloheximide treatment, when [35S]sulfate incorporation was inhibited by about 90%, addition of 1 mM beta-D-xyloside restored 76% of the incorporation into chondroitin sulfate observed in cultures treated only with xyloside. This suggests that the biochemical pathways for the affected by cycloheximide treatment. Cultures were prelabeled for 15 min with either [3H]serine or [35S]-methionine, and then cycloheximide was added to block further protein synthesis. Both precursors appeared in completed proteoglycan molecules with nearly first order kinetics with t 1/2 values of 92 +/- 8 and 101 +/- 11 min for [3H]serine and [35S]methionine, respectively, values in close agreement with the t 1/2 from the [35S]sulfate data. These results suggest that after cycloheximide treatment, the rate of [35S]sulfate incorporation into proteoglycan, after a correction for increases in chondroitin sulfate chain size, was directly proportional to the size of the intracellular pool of core protein. From the steady state rate of proteoglycan synthesis (estimated to be about 80 ng/min/10(6) cells in separate experiments) and a corrected t 1/2 value of 60 min, the amount of precursor core protein can be calculated to be about 500 ng/10(6) cells in these experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call