Abstract

The fatigue behavior and associated crack inititation of pearlite has been correlated with developing dislocation configurations in a cyclically deformed fully pearlitic steel. Under fatigue conditions at low stress amplitudes, dislocations are found to be generated and largely confined to the cementite/ferrite interfaces, most likely due to the development of elastic incompatibility stresses between the cementite and ferrite. This deformation mode encourages fatigue crack initiation parallel to the cementite lamellae. The fatigue limit of pearlite appears not to be influenced by the interlamellar spacing, a result basically different from that found in monotonic deformation where yielding and flow are strongly affected by the spacing. The apparent differences are discussed in terms of the different dislocation configurations formed during monotonic and cyclic deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.