Abstract

Primary myelofibrosis (PMF) and polycythemia vera (PV) are chronic myeloproliferative neoplasms. PMF and, to a lesser degree, PV are characterized by constitutive mobilization of hematopoietic stem cells (HSC) and progenitor cells (HPC) into the peripheral blood (PB). The interaction between the chemokine CXCL12 and its receptor CXCR4 plays a pivotal role in determining the trafficking of CD34(+) cells between the bone marrow (BM) and the PB. PMF, but not PV, is associated with downregulation of CXCR4 by CD34(+) cells due to epigenetic events. Both PV and PMF patients have elevated levels of immunoreactive forms of CXCL12 in the BM and PB. Using electrospray mass spectrometry, the PB and BM plasma of PV and PMF patients was shown to contain reduced amounts of intact CXCL12 but significant amounts of several truncated forms of CXCL12, which are lacking in normal PB and BM plasma. These truncated forms of CXCL12 are the product of the action of several serine proteases, including dipeptidyl peptidase-IV, neutrophil elastase, matrix metalloproteinase-2 (MMP-2), MMP-9, and cathepsin G. Unlike CXCL12, these truncates either lack the ability to act as a chemoattractant for CD34(+) cells and/or act as an antagonist to the action of CXCL12. These data suggest that proteolytic degradation of CXCL12 is characteristic of both PV and PMF and that the resulting truncated forms of CXCL12, in addition to the reduced expression of CXCR4 by CD34(+) cells, lead to a profound mobilization of HSC/HPC in PMF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.