Abstract

The characteristics of cutting forces vibration and its effects to the hole quality in reaming aluminum cast alloy using a poly-crystalline diamond (PCD) step reamer in dry and wet conditions were studied. First, centrifugal force vibration model of the PCD step reamer during machining process was established and through the analysis of the model, it can be concluded that the maximum amplitude of the vibration is positively related to the angular velocity of the reamer. Then, thrust force and cutting torque were measured by a Kistler Dynamometer during reaming process and these vibration frequency and amplitude were analyzed by fast Fourier transformation (FFT). Hole quality was evaluated by hole diameter and surface roughness. Results show that, as the spindle speed increases, the stability of thrust force and cutting torque deteriorates gradually, and there was a severe vibration in the cutting force and the surface roughness when the spindle speed reached 10000 rpm in wet and 7000 rpm in dry cutting conditions. Compared the variation of hole surface roughness and vibration characteristic of cutting forces, it can be observed that the trends are very consistent, the surface roughness deteriorates when cutting forces become unstable. Therefore,the cutting forces stability was an important factor that influence the hole quality. Cutting fluid has a positive effect to stabilize the reaming process and was beneficial to improve the hole quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.