Abstract
Transparent conductive CdO/Cu/CdO multilayer films were prepared using rf plasma magnetron sputtering and electron beam evaporation techniques. The CdO layers were prepared using rf plasma magnetron sputtering, while the Cu interlayer was prepared by electron beam evaporation technique. The Cu layer thickness was varied between 1 and 10 nm. The structural and optical properties as well as the sheet resistance of the multilayer films were studied. X-ray diffraction measurements revealed the presence of cubic CdO structure and the Cu peak was only observed for the multilayers prepared with 10 nm of Cu. It has been observed that the Cu interlayer thickness has a great influence on the optical and electrical properties of the multilayers. The transmittance of the multilayer films decreased while the reflectance increased with increasing Cu interlayer thickness. The refractive index and the extinction coefficient of the multilayer films were calculated. The estimated optical band gap values were found to be decreased from 2.75 ± 0.02 to 2.40 ± 0.02 eV as the Cu interlayer thickness increased from 1 to 10 nm. The sheet resistance was sensitive to the Cu interlayer thickness and it decreased with increasing Cu interlayer thickness. A sheet resistSSance of 21.7 Ω/sq, an average transmittance (between 700 and 1000 nm) of 77%, and an optical band gap of 2.5 ± 0.02 eV were estimated for the multilayer film with 2 nm Cu layer. The multilayer film with 2 nm Cu layer has the highest figure of merit value of 3.2 × 10−3 Ω−1. This indicates that the properties of this multilayer film are suitable for transparent conductive electrode applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.