Abstract

Based on 3D models of rotor blades made of monocrystalline materils, the influence of crystallographic orientation of material axes on the formation of natural frequency spectrum and mode shapes of the blades has been clarified. A computational-experimental method is proposed for the evaluation of fatigue limit of monocrystalline blades, which significantly reduces the test scope while improving the reliability of test results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.