Abstract

This paper uses first-order shear deformation theory and the finite element method to analyze the vibrations of rectangular plates with one or more cracks. The study investigated the influence of cracks (length, angle of inclination), the number of cracks, and the ratio of plate thickness to the natural vibration frequency of the plate, using phase field simulation. Plate thickness varies nonlinearly with the parabolic function. The results of the proposed method were compared with reputable studies to verify its reliability. In addition, some pictures of the characteristic vibration patterns of the plate with varying thickness are presented when cracks appear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.