Abstract

Reinforced concrete structures have been increasingly widely used through numerous industrial fields. These structures are often exposed to severely corrosive environments such as sea water, contaminated water, acid rain, and the seashore. Thus, corrosion problems of the steel bars embedded in concrete are very important from a safety and economic point of view. In this study, the effects of cover thickness on the corrosion properties of reinforced steel bar embedded in mortar specimen (W/C:0.6) were investigated using electrochemical methods such as corrosion potentials, polarization curves, cyclic voltammograms, galvanostat and potentiostat. Corrosion potentials shifted to the noble direction, and the value of AC impedance also exhibited a higher value with increasing cover thickness, furthermore, polarization resistance also increased with increasing cover thickness. This is probably that the thinner cover thickness, seawater solution is easy to arrive at embedded steel compared to other thicker cover thickness, so, its steel bar may be easily corroded due to chloride ion, which is resulted in shifting corrosion potential to negative direction, decreasing polarization resistance. Consequently, it is considered that the relation between corrosion resistance of reinforced steel and cover thickness is nearly matched with each other. However, its corrosion resistance estimated by measurement of corrosion potential was not well in agreement with value obtained by polarization curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call