Abstract

Fiber metal laminates are the advanced composite materials, in which the metal and FRP layers are stacked alternatively to achieve the desired properties. The presence of FRP layers enhances the fatigue, fracture properties and weight savings. Durability and plasticity of the metal plays a significant role in the design of fiber metal laminates. This study evaluates the role of middle metal layer (core) thickness on the behavior of Carall fiber metal laminates under low velocity impact loading. Two types of Carall 3/2 with middle layer of varying thickness are considered. The metal volume fraction is same for both the laminates. Finite element simulations have been carried out for the laminates considered according to the standard ASTM D7136. Johnson–cook plasticity and damage model and two-dimensional Hashin damage criteria have been used to model the aluminum and CFRP respectively. From the study, it was found that the placement of thicker layer at the middle position in the Fiber metal laminate enhances the impact resistance of Carall. The energy absorption studies also indicate that the presence of thicker layer at the middle position increases the energy absorption capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call