Abstract

Cu x Zn 1 − x S ( x = 0, 0.25, 0.50, 0.75, 1) thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature and ambient pressure. The copper concentration ( x) effect on the structural, morphological and optical properties of Cu x Zn 1 − x S thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline nature and are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing copper concentration. The energy bandgap values were changed from 2.07 to 3.67 eV depending on the copper concentration. The refractive index ( n), optical static and high frequency dielectric constants ( ε o, ε ∞) values were calculated by using the energy bandgap values as a function of the copper concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.