Abstract

This work is devoted to the investigation of propagating polymerization fronts converting a liquid monomer into a liquid polymer. We consider a simplified mathematical model which consists of the heat equation and equation for the depth of conversion for one-step chemical reaction and of the Navier-Stokes equations under the Boussinesq approximation. We fulfill the linear stability analysis of the stationary propagating front and find conditions of convective and thermal instabilities. We show that convection can occur not only for ascending fronts but also for descending fronts. Though in the latter case the exothermic chemical reaction heats the cold monomer from above, the instability appears and can be explained by the interaction of chemical reaction with hydrodynamics. Hydrodynamics changes also conditions of the thermal instability. The front propagating upwards becomes less stable than without convection, the front propagating downwards more stable. The theoretical results are compared with experiments. The experimentally measured stability boundary for polymerization of benzyl acrylate in dimethyl formamide is well approximated by the theoretical stability boundary. (c) 1998 American Institute of Physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.