Abstract

The first aim of the research presented here is to examine the effect of turbine control by comparing a passive open-loop control strategy with a constant rotational speed proportional–integral–derivative (PID) feedback loop control applied to the same experimental turbine. The second aim is to evaluate the effect of unsteady inflow on turbine performance by comparing results from a towing-tank, in the absence of turbulence, with results from the identical machine in a tidal test site. The results will also inform the reader of: (i) the challenges of testing tidal turbines in unsteady tidal flow conditions in comparison to the controlled laboratory environment; (ii) calibration of acoustic Doppler flow measurement instruments; (iii) characterising the inflow to a turbine and identifying the uncertainties from unsteady inflow conditions by adaptation of the International Electrotechnical Commission technical specification (IEC TS): 62600-200. The research shows that maintaining a constant rotational speed with a control strategy yields a 13.7% higher peak power performance curve in the unsteady flow environment, in comparison to an open-loop control strategy. The research also shows an 8.0% higher peak power performance in the lab compared to the field, demonstrating the effect of unsteady flow conditions on power performance. The research highlights the importance of a tidal turbines control strategy when designing experiments.

Highlights

  • The economic feasibility of offshore wind energy has reached unprecedentedly low strike prices in the recent Contracts for Difference (CfD) auction in the UK at £57.50/MWh in 2022/23, dropping 43%since 2012 [1]

  • The range of turbulence intensities used (3% and 15%) may be typical of what is found at a tidal test site and the results show that this change in intensity has a near negligible effect on the time averaged performance of the turbine [5]

  • One of the challenges of Acoustic Doppler profilers (ADPs) and Acoustic Doppler Velocimetry (ADV) deployments in towing tanks is maintaining a sufficient level of seeding in the water to suit the acoustic reflection and achieve strong Signal to Noise Ratio (SNR), this is not an issue in the field

Read more

Summary

Introduction

The economic feasibility of offshore wind energy has reached unprecedentedly low strike prices in the recent Contracts for Difference (CfD) auction in the UK at £57.50/MWh in 2022/23, dropping 43%since 2012 [1]. To deliver further cost reductions in an economically sustainable manner, developers must improve their technical understanding of a technology and gain experience of its performance in the real marine environment. Even though numerical models and various design codes and methods for rotational power generators such as wind turbines and hydropower turbines are well established and in general yield excellent results, these models still require validation through experimental testing [2,3]. It is noted from this model scale testing that Reynolds independence is a key consideration for non-dimensional comparison. Gaurier et al [4] published a study comparing the test results from the Energies 2018, 11, 1533; doi:10.3390/en11061533 www.mdpi.com/journal/energies

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call