Abstract

Background: Continuous positive airway pressure (CPAP) and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia (BPD), the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP in the first week of life on later respiratory system mechanics. Objective: We wanted to test the hypothesis that daily CPAP in a newborn-mouse model of BPD improves longer-term respiratory mechanics. Methods: Mouse pups from C57BL/6 pregnant dams were exposed to room air (RA) or hyperoxia (50% O<sub>2</sub>, 24 h/day) for the first postnatal week with or without exposure to daily CPAP (6 cm H<sub>2</sub>O, 3 h/day). Respiratory system resistance (Rrs) and compliance (Crs) were measured following a subsequent 2-week period of RA recovery. Additional measurements included radial alveolar and macrophage counts. Results: Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization and increased macrophage counts at 3 weeks when compared to RA-treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization and decreased lung macrophage infiltration in the hyperoxia-exposed pups. Conclusions: We have demonstrated that daily CPAP had a longer-term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic lung injury in newborns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.