Abstract

This study investigates the effect of scanning parameters on the accuracy of measurements from three-dimensional (3D), multi-detector computed tomography (MDCT) mandible renderings. A broader range of acceptable parameters can increase the availability of computed tomographic (CT) studies for retrospective analysis. Three human mandibles and a phantom object were scanned using 18 combinations of slice thickness, field of view (FOV), and reconstruction algorithm and 3 different threshold-based segmentations. Measurements of 3D computed tomography (3DCT) models and specimens were compared. Linear and angular measurements were accurate, irrespective of scanner parameters or rendering technique. Volume measurements were accurate with a slice thickness of 1.25 mm, but not 2.5 mm. Surface area measurements were consistently inflated. Linear, angular, and volumetric measurements of mandible 3D MDCT models can be confidently obtained from a range of parameters and rendering techniques. Slice thickness is the primary factor affecting volume measurements. These findings should also apply to 3D rendering using cone-beam CT (CBCT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.