Abstract

The use of a protein source such as serum and albumin had been extensively employed as supplements of culture media for handling and culture of gametes and embryos. Protein molecules behave as colloids in solution and contribute to the osmotic pressure of fluids. The interaction of proteins in solution and spermatozoa needs to be assessed in order to determine their possible role in osmoregulation. The aim of this study was to assess possible osmoregulatory mechanisms of protein supplementation against exposure to hypoosmotic conditions by assessing the sperm's response to those environments. A stock hypoosmotic solution (HOS) was prepared by using a mixture of fructose and sodium citrate and adjusted to an osmotic pressure of 150 mOsm l-1. Another stock solution was prepared by diluting a preparation of synthetic serum supplement [SSS; 6% (v/v) total protein] with distilled water to obtain an osmotic pressure of 150 mOsm l-1 (hypoosmotic SSS or H-SSS). Three additional solutions were prepared by mixing the stock HOS and H-SSS solutions in the following proportions (v/v): (i) 75% H-SSS/25% HOS, (ii) 50% H-SSS/50% HOS and (iii) 25% H-SSS/75% HOS. Aliquots of washed spermatozoa from 18 men were diluted 1 : 10 (v/v) with each of the testing solutions and incubated for 60 min. Specimens were assessed on wet mounts for total and specific swelling patterns. Swelling patterns were classified as maximal (>50% tail length swollen) and minimal (<50% tail length swollen) swelling with or without associated sperm motility. The major finding of this study was that increasing the concentration of protein supplementation resulted in a decrease in the proportion of maximal sperm tail swelling patterns and an increase in the proportion of minimal tail swelling patterns. A proportion of spermatozoa which exhibited minimal swelling patterns were still motile in all solutions tested, and the percentage of those spermatozoa increased as the protein supplementation was also increased in the testing solutions. Incorporation of protein supplementation as described in this study delays the effect of sperm swelling in hypoosmotic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call