Abstract

AbstractFlight capacity of codling moths, Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae), was measured with computer-linked flight mills following exposure to one of two temperature regimes. Codling moth adults were held for 24 hours before flight under either chilled (2 °C) or unchilled (24 °C) conditions. The chilling treatment emulated conditions that codling moths are exposed to pre-release in the Okanagan Sterile Insect Release (SIR) Programme. Moths were assayed on flight mills for eight hours to obtain a measure of flight capacity based on total flight distance. Energy use was assessed by weight loss during flight and post-flight body lipid content compared with similarly treated moths that did not fly. Flight distance did not vary with pre-flight temperature treatment, however moth pre-flight weight influenced flight capacity; heavier moths flew further. Moths chilled before the bioassay used less energy based on reduced weight loss and higher lipid content post bioassay as compared with unchilled moths. The current cold storage procedure used in the SIR Programme does not negatively influence subsequent flight capacity and reduces energy use during flight. Codling moths can fly on average between 7–10km in an eight-hour flight mill bioassay and lipids, at least in part, are used to fuel flight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call