Abstract

Cold atmospheric plasma (CAP) is known as the versatile tool in different biological, and medical applications. In this study, we investigated the effect of cold plasma on diabetes via in vitro and in vivo assessments. We performed the in vitro assay to evaluate the impact of CAP on glycated glutathione peroxidase (GPx) through enzyme activity measurement as a function index and far- and near-UV circular dichroism (CD) and fluorescence analysis as structure indices. The result of in vitro assessment showed that the exposure of glycated GPx to plasma causes a considerable increase in enzyme activity up to 30%. Also, the evaluation of far- and near-UV CD and fluorescence analysis indicated a modification in the protein structure. According to obtained result from in vitro assessment, in vivo assay evaluated the effect of CAP on diabetic mice through analyzing of blood glucose level (BGL), advanced glycation end products (AGEs), antioxidant activity, oxidative stress biomarkers such as malondialdehyde (MDA), advanced oxidation protein products (AOPP), and oxidized low-density lipoprotein (oxLDL), and inflammation factors including tumor necrosis factor (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). The result of in vivo experiment also showed a 20% increase in antioxidant activity. Also, the reduction in AGEs, oxidative stress biomarkers, and inflammatory cytokines concentrations was observed. The result of this study revealed that CAP could be useful in diabetes treatment and can be utilized as a complementary method for diabetes therapy.

Highlights

  • Cold atmospheric plasma (CAP) is known as the versatile tool in different biological, and medical applications

  • The application of none-thermal atmospheric-pressure plasma or cold atmospheric plasma (CAP) has attracted enormous interest in the medicine, and biology which lead to opening a new approach as the plasma medicine field[4]

  • Diabetes mellitus is a class of chronic metabolic disorders that distinguished by hyperglycemia that is arising from insufficiency of insulin secretion or lack of response to insulin[8]

Read more

Summary

Introduction

Cold atmospheric plasma (CAP) is known as the versatile tool in different biological, and medical applications. According to obtained result from in vitro assessment, in vivo assay evaluated the effect of CAP on diabetic mice through analyzing of blood glucose level (BGL), advanced glycation end products (AGEs), antioxidant activity, oxidative stress biomarkers such as malondialdehyde (MDA), advanced oxidation protein products (AOPP), and oxidized low-density lipoprotein (oxLDL), and inflammation factors including tumor necrosis factor (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). Plasma is a gas-like system, and considered as the fourth state of the material[1] It is a partially or wholly ionized gas, which contains neutrals, free electrons, positively and negatively ions, free radicals, active species, molecules and atoms with or without excitation, and UV photons[2]. Oxidative stress can be evaluated by measuring the final products of ROS as biomarkers of oxidative stress, including oxidized products of lipid, protein, and low-density lipoprotein (LDL) such as the malondialdehyde (MDA), advanced oxidation protein products (AOPP), and oxidized low-density lipoprotein (oxLDL), respectively[17]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call