Abstract
Influent chemical oxygen demand/nitrogen (COD/N) ratio is used to control fouling in membrane bioreactor (MBR) systems. However, COD/N also affects the physicochemical and biological properties of MBR biomass. The current study examined the relationship between COD/N ratio in feed wastewater and extracellular polymeric substances (EPS) production in MBRs. Two identical submerged MBRs with different COD/N ratios of 10:1 and 5:1 were operated in parallel. The cation concentration and floc-size of the sludge were measured. The composition and characteristics of bound EPS and soluble microbial products (SMP) under each COD/N ratio were also examined. Batch tests were conducted in 1000 mL bottles to study the process of the release of foulants from the sludge when 1 g of (NH 4 +-N)/L was added. Results showed that the influent COD/N ratio could change the physicochemical properties of EPS and SMP. Moreover, excessive NH 4 + in the supernatant could facilitate the role of NH 4 + as a monovalent cation, the replacement of the polyvalent cation in bound EPS, and even the extraction of EPS components from the surface of the sludge to form new SMP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.