Abstract

The conductivity of cobalt oxide doped Ce0.9Gd0.1O1.95 (CGO10) of various doping concentrations, sintering temperatures, dwell times, and cooling rates was investigated by 4-point DC conductivity measurements. In cobalt oxide doped CGO10, an enhanced total conductivity occuring with a low activation energy of 0.54 eV was detected below 250∘C in quenched samples. If the same samples were cooled down slowly, only the ionic conductivity of undoped CGO with an activation energy of 0.8 eV was found. The increased conductivity is attributed to a percolating network of an electronically conducting grain boundary phase rich in CoO, which can be retained by quenching from temperatures between 900 and 1000∘C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.