Abstract

The effect of mechanical activation (MA) and cobalt content on the combustion velocity and maximum combustion temperature, elongation of samples during synthesis, the size of composite particles of the mixture after MA, phase composition and morphology of combustion products in the Ni + Al + Co system is investigated in this work. Activation of the Ni + Al + xCo mixture allowed the samples to burn at room temperature, with a cobalt content of up to 50 wt. %. An increase in the cobalt content in Ni + Al + xCo mixtures led to a decrease in the size of composite particles after MA, elongation of product samples and the maximum synthesis temperature. After MA, the elongation of the product samples and combustion velocity increased many times, the maximum synthesis temperature increased. With an increase in the cobalt content in the Ni + Al + Co mixture, combustion velocity first increases (at 10% Co), then decreases. Solid solutions based on NiAl and Ni3Al intermetallides were synthesized by the SHS method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.