Abstract

This study investigates the influence of cobalt (Co) alloying addition and heat treatment temperature on the phase transformation behaviour controlling the superelasticity and shape memory effect (SME) of Nickel-Titanium (Ni-Ti) alloys, commonly known as nitinol. The microstructural evolution upon heat treatment conducted at a temperature ranging from 440 to 560 °C was thoroughly analyzed via Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), and Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS). Increase in heat treatment temperatures from 470 °C up to 530 °C led to the dissolution of particles present in as-received (cold-worked) condition. It was determined that Co addition into the Ni-Ti alloy system resulted in a change in the nucleation and growth kinetics of Ti-rich precipitates, leading to the formation of larger and fewer particles during processing. Both binary and ternary alloys showed a decrease in austenite finish temperature (Af) with increasing heat treatment temperatures, however, the rate of decrease was found to be higher for Co containing ternary alloys. This is linked with faster structural relaxation when Co is present and evidenced by lattice size variation during heat treatment. It is highlighted that heat treatment methodology needs to be tailored to the specific alloy composition for controlling superelasticity and SME via alloy design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.