Abstract
The present investigation has been revealed that homogeneous silver-tungsten (Ag–W) composite powders doped with cobalt as sinter aid can be produced by the two-stage reduction of co-precipitated tungstate. The sintering of the powders has been studied using dilatometry and the results showed that the critical level for activated sintering is of the order of 0.3 mass percent cobalt with respect to the tungsten content of the compact powder. This critical level is equivalent to approximately six to seven atomic layer coverage of the tungsten particles by cobalt. The levels of cobalt addition above the critical amount leads to the formation of cobalt tungsten (CoW3) intermetallic compound precipitates, which become trapped within the silver phase in the sintered composite material. Microstructural evaluation of sintered specimens has been carried out using optical and electron microscopy. Transmission electron microscopy results revealed the neck formation between adjacent tungsten particles along with the presence of silver around the tungsten particles. Energy dispersive X-ray (EDX) analysis also confirmed that amounts of cobalt was 0.3 mass percent, in the region containing the silver at the tungsten particle interface which agreed with the level of activated sintering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.