Abstract

The effect of second-phase particles on the rate of grain refinement during severe deformation processing has been investigated, by comparing the microstructure evolution in an AA8079 aluminium alloy, containing 2.5 vol.% of ~2 μm particles, with that in a high purity, single-phase, Al-0.13% Mg alloy, deformed identically by ECAE to an effective strain of ten. The materials were analysed by high-resolution EBSD orientation mapping, which revealed that grain refinement occurred at a dramatically higher rate in the particle-containing alloy. A submicron grain structure could be achieved by an effective strain of only five in the particle-containing alloy, compared to ten in the single-phase material. The mechanisms that contribute to this acceleration of the grain refinement process are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.