Abstract

CO2 has to be monitored for indoor air quality, being also an important greenhouse gas. The electrical and sensing gas properties of the undoped and Fe doped TiO2 thin films, obtained by RF sputtering, have been investigated in different CO2 atmospheres. It was observed that the response to CO2 increases by Fe doping for the lowest doped film, and then decreases, as the dopant concentration increases. An explanation was given based on multiphonon-assisted hopping model. By studying the films electrical conductivity in front of a certain CO2 atmosphere, we have qualitatively evidenced the semiconducting n-type nature of the films under study, except for the highest Fe doped film which has a p-type behavior. An important finding is that Fe doping determines the decrease of the optimum operating temperature, approaching the room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.