Abstract
SmYb1−xMgxZr2O7−x/2 (0≤x≤0.15) ceramics are pressureless-sintered at 1973K for 10h in air. The structure and electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics are investigated by the X-ray diffraction, scanning electron microscopy and impedance spectroscopy measurements. SmYb1−xMgxZr2O7−x/2 ceramics exhibit a defect fluorite-type structure. The measured electrical conductivities of SmYb1−xMgxZr2O7−x/2 ceramics obey the Arrhenius relation, and electrical conductivity of each composition increases with increasing temperature from 673 to 1173K. At identical temperature levels, the electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics gradually increases with increasing magnesia content. SmYb1−xMgxZr2O7−x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0×10−4 to 1.0atm at all test temperature levels. The electrical conductivity obtained in SmYb1−xMgxZr2O7−x/2 ceramics reaches the highest value of 2.72×10−3Scm−1 at 1173K for the SmYb0.85Mg0.15Zr2O6.925 ceramic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.