Abstract

AbstractPlasticizers play a key role in the formulation of polymers and in determining their physical properties and processability. This study examines the effects of citrate esters, triethylcitrate, and triacetine as plasticizers on the thermal and mechanical properties of poly(methyl methacrylate). The samples were characterized by differential scanning calorimetry, dynamical mechanical analysis, and mechanical testing under different plasticizer contents. Both citrate esters proved to be effective as plasticizers, DSC data for the triacetine additive fits with Fox equation. Microstructure and relaxation properties were studied by dynamic mechanical analysis where loss modulus shows clearly that absorbed plasticizer shifts the α‐transition to lower temperature and β‐relaxations associated to ester side groups are unchanged even up to 30 wt % plasticizer. Mechanical properties were evaluated with an Instron testing machine. Both additives produced (1) an initial plasticization, with a decrease in tensile strength and modulus; (2) an antiplasticization, reflected as an increase in tensile strength; and modulus and (3) a final plasticization, with a notable decrease in tensile strength and modulus and an increase in elongation where a 35 wt % of triethylcitrate added to the poly(methyl methacrylate) increased in 200% its elongation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call