Abstract

The aim of the present study was to characterize the effects of chronic nitric oxide synthase (NOS) inhibition on the alterations of regulatory myocardial proteins of intracellular signaling pathways (mitogen-activated protein kinase (MAPK) and Akt kinase cascades) and matrix metalloproteinases (MMP). Chronic NO deficiency (NOD) was induced by NG-nitro-L-arginine methyl ester (L-NAME, 40 mg/kg/day, 4 weeks). Protein levels and activation of protein kinases were determined using specific antibodies, activities of MMP were analyzed by zymography in gels containing gelatin as a substrate. The development of NOD was associated with decreased activation of endothelial NOS (eNOS) and down-regulation of protein level of inducible NOS (iNOS). Investigation of kinase pathways revealed that the activation of extracellular signal-regulated kinases (ERK) and the levels of upstream activators of ERK (aFGF, H-Ras) were decreased after L-NAME treatment. Western blot analysis revealed that chronic application of L-NAME also decreased the activation of Akt kinase as compared with control hearts. Study of MMPs showed that in L-NAME-treated rat hearts activities of tissue MMP-2 were decreased. It is concluded that development of NOD resulted in inhibition of ERK and Akt kinase pathways and these changes suggest the involvement of these cascades in responses of myocardium to NOD. The results also point to the possible relationship between ERK and Akt kinase pathways and activation of eNOS and/or MMP-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.