Abstract
To assess the effectiveness of different chemotherapeutic agents on biofilm-contaminated titanium surfaces. This study used a recently described biofilm model. In experiment 1, Streptococcus mutans biofilms grown on titanium discs were treated with (1) EDTA, (2) citric acid (CA), (3) cetylpyridium chloride, (4) Ardox-X, (5) hydrogen peroxide (H(2) O(2) ), (6) chlorhexidine (CHX) and (7) water. In experiment 2, polymicrobial biofilms were treated with (1) CA, (2) Ardox-X, (3) H(2) O(2) , (4) Ardox-X followed by CA, (5) H(2) O(2) followed by CA, (6) CHX and (7) water. Aliquots of the suspended biofilms were plated and incubated anaerobically to enable counts of the total remaining viable bacteria, which were expressed as CFUs. Following incubation, the amount of protein remaining in the treated S. mutans biofilms was quantified to assess the removal potency of each treatment agent. H(2) O(2) , Ardox-X and CA killed significantly more S. mutans compared with the other treatments. H(2) O(2) and CA removed significantly more protein than water. CA and the combination treatments were significantly more effective against the polymicrobial biofilms than CHX, H(2) O(2) and Ardox-X. The difference in the killing efficacy between CA alone and the combination treatments was not statistically significant. Among the chemicals tested, CA demonstrated the greatest decontamination capacity with respect to both the killing and the removal of biofilm cells. This combination of effects is clinically desirable because it promotes biocompatibility and healing around a previously contaminated implant surface. These results should, however, be validated in in vivo studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.